cylindrical hypersurface - определение. Что такое cylindrical hypersurface
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое cylindrical hypersurface - определение

GENERALIZATION OF THE CONCEPTS OF HYPERPLANE, PLANE CURVE, AND SURFACE; A MANIFOLD OR AN ALGEBRAIC VARIETY OF DIMENSION N, WHICH IS EMBEDDED IN AN AMBIENT SPACE OF DIMENSION N+1
Complex hypersurface; Hyper surface; Projective hypersurface; Affine algebraic hypersurface; Projective algebraic hypersurface

Hypersurface         
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidean space, an affine space or a projective space.
Cylindrical drum         
CLASS OF MUSICAL INSTRUMENTS
Cylindrical drums are a category of drum instruments that include a wide range of implementations, including the bass drum and the Iranian dohol. Cylindrical drums are generally two-headed and straight-sided, and sometimes use a buzzing, percussive string.
Cylindrical harmonics         
BESSEL FUNCTIONS FOR INTEGER Α
Cylindrical harmonic
In mathematics, the cylindrical harmonics are a set of linearly independent functions that are solutions to Laplace's differential equation, \nabla^2 V = 0, expressed in cylindrical coordinates, ρ (radial coordinate), φ (polar angle), and z (height). Each function Vn(k) is the product of three terms, each depending on one coordinate alone.

Википедия

Hypersurface

In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. Hypersurfaces share, with surfaces in a three-dimensional space, the property of being defined by a single implicit equation, at least locally (near every point), and sometimes globally.

A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface.

For example, the equation

x 1 2 + x 2 2 + + x n 2 1 = 0 {\displaystyle x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2}-1=0}

defines an algebraic hypersurface of dimension n − 1 in the Euclidean space of dimension n. This hypersurface is also a smooth manifold, and is called a hypersphere or an (n – 1)-sphere.